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a b s t r a c t

The fluorometric coupled enzyme assay to measure phosphatidic acid (PA) involves the solubilization of
extracted lipids in Triton X-100, deacylation, and the oxidation of PA-derived glycerol-3-phosphate to
produce hydrogen peroxide for conversion of Amplex Red to resorufin. The enzyme assay is sensitive, but
plagued by high background fluorescence from the peroxide-containing detergent and incomplete heat
inactivation of lipoprotein lipase. These problems affecting the assay reproducibility were obviated by
the use of highly pure Triton X-100 and by sufficient heat inactivation of the lipase enzyme. The enzyme
assay could accurately measure the PA content from the subcellular fractions of yeast cells.

© 2017 Elsevier Inc. All rights reserved.
The analysis of phosphatidic acid (PA) is essential to understand
its role in the synthesis of membrane phospholipids and the neutral
lipid triacylglycerol [1,2], and in lipid signaling [3,4]. In our labo-
ratory, we are interested in how the cellular level of PA is controlled
by the action of the yeast Pah1 PA phosphatase, an enzyme that
catalyzes the dephosphorylation of PA to yield diacylglycerol [5].
The reaction product in yeast, as well as in higher eukaryotes, is
required to synthesize triacylglycerol, and to synthesize phospha-
tidylcholine or phosphatidylethanolamine via the Kennedy
pathway [1,2]. In yeast, the substrate PA is a precursor for the de
novo synthesis of all major membrane phospholipids, and governs
the transcriptional regulation of several genes responsible for the
synthesis of membrane phospholipids [3].

To determine the cellular levels of PA, we have used analytical
methods such as thin-layer chromatography, high performance
liquid chromatography, and mass spectrometry [5,6]. While these
methods can analyze PA and other lipids, they require relatively
more effort or specific analytical instruments. For themeasurement
of PA, a coupled enzyme assay developed by Morita et al. [7] has
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generated much enthusiasm because it is highly sensitive, specific,
and easy to perform. In the assay, lipids are extracted from the cell,
solubilized in the nonionic detergent Triton X-100, and treatedwith
lipoprotein lipase to remove fatty acyl moieties [7]. Glycerol-3-
phosphate, which is produced only from PA (or lysoPA), is
oxidized by glycerol-3-phosphate oxidase to produce hydrogen
peroxide, which is required to convert Amplex Red to resorufin, a
fluorescent product (Ex544/Em590), by peroxidase [7]. Several
studies using the method have been published [8e15].

During the course of our work, we found that the method is
plagued by high background fluorescence compromising the
interpretation of the data. By examining each step of the enzyme
assay, we identified that Triton X-100, which is used for lipid sol-
ubilization, is a major causative agent for background fluorescence.
Many commercial preparations of Triton X-100 contain a high level
(e.g., ~0.2%) of peroxides, and become the source of high back-
ground fluorescence. This caveat, which had not been discussed in
the publication of the assay, could be addressed by using a highly
pure preparation of Triton X-100 (e.g., Thermo Scientific, product
no. 28314; Roche, product no. 1332481) that contains a very low
level (e.g., ~0.002%) of peroxides.

Another source of high background fluorescence is the lipo-
protein lipase used for deacylation of extracted lipids. Incubation of
the lipase reaction mixture for 3 min at 96 �C was described to be
sufficient to inactivate the enzyme, reducing background
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fluorescence by ~90% [7]. However, we have found that the heat
treatment is not sufficient to inactivate the lipase, and that incu-
bation for at least 10 min in boiling water ensures the full inacti-
vation of the enzyme.

By controlling the two sources of non-specific fluorescence, we
were able to reduce the background from >800 to ~100 arbitrary
units with our fluorescence spectrometer. We utilized the coupled
enzyme assay to measure the PA content in pah1D mutant cells,
which lack the Pah1 PA phosphatase enzyme. As described previ-
ously using thin-layer chromatography or high performance chro-
matography [5,6], the cellular content of PA (as reflected in the cell
lysate) was higher in the mutant by 3-fold (Fig. 1). The cell lysate
was fractionated into the mitochondrial and microsomal fractions
[16], and the subcellular fractions were analyzed for PA levels using
the coupled assay. In wild type cells, the concentration of PA was
enriched in the mitochondrial and microsomal fractions by 2-fold
(Fig. 1). Whereas the pah1D mutation did not have a significant
effect on the PA content of the mitochondrial fraction, the mutation
caused a 4-fold increase in the PA content of the microsomal frac-
tion (Fig. 1), which is derived from endoplasmic reticulum mem-
branes. This result supports the observation that Pah1 associates
with the endoplasmic reticulum membrane to catalyze its PA
phosphatase reaction [17,18].

In summary, the fluorometric coupled enzyme assay for PA
measurement [7] is an excellent method, and can be readily
reproducible by utilizing a highly purified preparation of the Triton
X-100 detergent and extending the time for the heat inactivation of
Fig. 1. Measurement of PA levels in yeast subcellular fractions by the fluorometric
coupled enzyme assay. Wild type (WT) or pah1D mutant [5] cells were grown to the
stationary phase in 250 ml YEPD (1% yeast extract, 2% peptone, and 2% glucose) me-
dium. The cells (~4 g wet weight) of each culture were harvested by centrifugation,
treated with lyticase, and the resulting spheroplasts were lysed using a Dounce ho-
mogenizer. 90% of the cell lysate was fractionated by differential centrifugation [16],
and the lipids were extracted [19] from the lysate and subcellular fractions. The lipid
extracts were solubilized in 0.5 ml of 1% Triton X-100 (Surfact-Amps, < 1.0 meq/ml
peroxides, Thermo Scientific), and 20 ml of the samples were treated with 2400 units
(mmol/min) Pseudomonas sp. lipoprotein lipase (Wako). The lipase was inactivated by
boiling for 10 min and the denatured protein was removed by centrifugation. Glycerol-
3-phosphate derived from PA was oxidized by 0.5 unit (mmol/min) Aerococcus viridans
glycerol-3-phosphate oxidase (Sigma-Aldrich) to produce hydrogen peroxide, which
was then used for the conversion of Amplex Red (10-Acetyl-3,7-
dihydroxyphenoxazine, Thermo Scientific) to resorufin by 0.5 unit (mmol/min) horse-
radish peroxidase (Sigma-Aldrich) [7]. The last two steps in the coupled enzyme re-
action were carried out for 30 min at room temperature in a black 96-well plate, and
the resulting fluorescence was immediately measured by Agilent Technologies Cary
Eclipse Fluorescence Spectrometer. The Amplex Red stop solution [7], which is inef-
fective in stopping the peroxidase reaction under the conditions of the assay, was not
used in this work. A standard curve with dioleoyl PA (Avanti Polar Lipids)
(200e1000 pmol, linear range) was used to quantify the phospholipid in the extracted
lipids. The data are averages ± S.D. (error bars) from triplicate determinations. *,
p < 0.01.
the lipoprotein lipase. Here we showed the method to be useful for
measuring PA from yeast, and as shown previously [7], the method
is useful for measuring the phospholipid from mammalian cells.
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